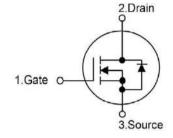


N Channel MOSFET

P6)

Lead Free Package and Finish

Applications:


- Switch Mode Power Supply(SMPS)
- Uninterruptible Power Supply(UPS)
- •PFC stages for server & telecom
- •Consumer

lo	Rds(ON)(Typ.)	VDSS
9A	0.65Ω	500V

Features:

- •New revolutionary high voltage technology
- •Better RDS(on) in TO-252
- •Ultra Low Gate Charge cause lower driving requirements
- •Periodic avalanche rated
- •Ultra low effective capacitances

Ordering Information

Part Number	Package	Marking
RS9N50D	TO-252	RS9N50D

NOT TO Scale

Symbol	Parameter	RS9N50D	Units
VDSS	Drain-to-Source Voltage	500	V
ID	Continuous Drain Current (TC = 25℃)	9	
ID	Continuous Drain Current (TC = 100℃)	6.8	Α
ldм	Pulsed Drain Current (Note*1)	40.0	
PD	Power Dissipation(Tc=25℃)	70.0	W
VGS	Gate-to-Source Voltage	±30	V
EAS	Single Pulse Avalanche Engergy (Note*2)	320	mJ
IAR	Avalanche Current (Note*1)	8.0	Α
EAR	Repetitive Avalanche Engergy (Note*1)	45	mJ
	Maximum Temperature for Soldering		
TL TPKG	Leads at 0.063in(1.6mm)from Case for 10 seconds Package Body for 10 seconds	300 260	$^{\circ}\! \mathbb{C}$
TJ and TSTG	Operating Junction and Storage Temperature Range	-55 to 150	

^{*}Drain Current Limited by Maximum Junction Temperature

Caution:Stresses greater than those listed in the "Absolute Maximum Ratings" Table may cause permanent damage to the device.

Thermal Resistance

Symbol	Parameter	RS9N50D	Units	Test Conditions
RθJC	Junction-to-Case	1.78	°C/W	Drain lead soldered to water cooled heatsink,PD Adjusted for a peak junction temperature of +150℃.
RθJA	Junction-to-Ambient	60		1 cubic foot chamber,free air.

REASUNOS

RS9N50D

OFF Characteristics TJ=25°C unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
BVDSS	Drain-to-source Breakdown Voltage	500			V	VGS = 0V, ID = 250µA, TJ= 25℃
			500		V	VGS = 0V, ID = 250µA, TJ= 150℃
IDSS	Drain-to-Source Leakage Current			1.0	μA	VDS=500V,VGS=0V
1000	Gate-to-Source Forward Leakage			100		VGS=+30V VDS=0V
IGSS	Gate-to-Source Reverse Leakage			-100 nA		VGS=-30V VDS=0V

ON Characteristics TJ=25℃ unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
RDS(on)	Static Drain-to-Source On-Resistance		0.65	0.80	Ω	VGS=10V,ID=4.5A
VGS(TH)	Gate Threshold Voltage	3.0		4.0	V	VGS=VDS,ID=250μA

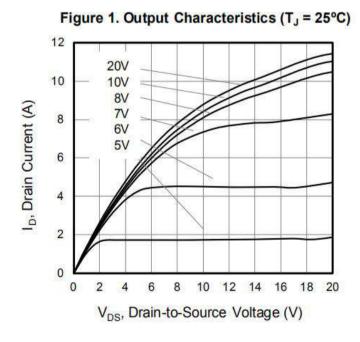
Resistive Switching Characteristics Essentially independent of operating temperature

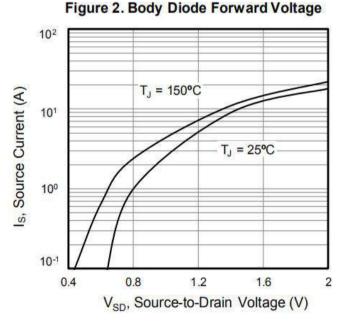
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
td(ON)	Turn-on Delay Time		23			VDS=400V
trise	Rise Time		15			ID=9A
td(OFF)	Turn-OFF Delay Time		90		ns	RG=25Ω
tfall	Fall Time		30			VGS=10V

Dynamic Characteristics Essentially independent of operating temperature

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Ciss	Input Capacitance		1056			VGS=0V
Coss	Output Capacitance		105		pF	VDS=100V
Crss	Reverse Transfer Capacitance		4.4			f=1.0MHz
Qg	Total Gate Charge		22.0			VDS=480V
Qgs	Gate-to-Source Charge		5.0		nC	ID=9A
Qgd	Gate-to-Drain("Miller") Charge		9.0			VGS=10V

Copyright Reasunos http://www.reasunos.com REV:A3 May.2019 Page 2 of 8




Source-Drain Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
IS	Continuous Source Current		-	9	Α	Integral pn-diode
ISM	Maximum Pulsed Current			40	Α	in MOSFET
VSD	Diode Forward Voltage		0.6	1.4	V	IS=9A,VGS=0V Tj=25℃
trr	Reverse Recovery Time		310		nS	VD 050VVV00 0V
Qrr	Reverse Recovery Charge		4.1		μC	VR=250V,VGS=0V IS=9A,di/dt=100A/µs
Irrm	Peak Reverse Recovery Current		30		Α	10 σπ,απατ 100π υμο

Notes:

^{*1.}Repetitive rating; pulse width limited by maximum junction temperature.

^{*2.} Pulse width tp limited by Tj,max

Figure 3. Drain Current vs. Temperature

Figure 4. BV_{DSS} Variation vs. Temperature

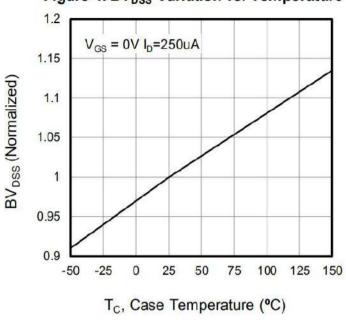


Figure 5. Transfer Characteristics

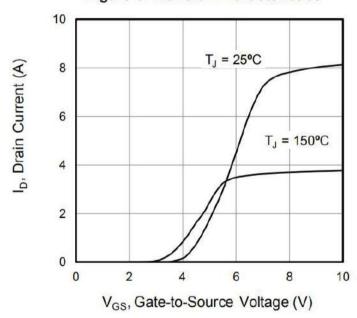
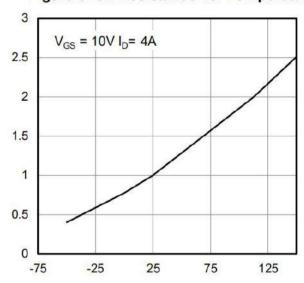



Figure 6. On-Resistance vs. Temperature

T_J, Junction Temperature (°C)

RDS(on), On-Resistance (Normalized)

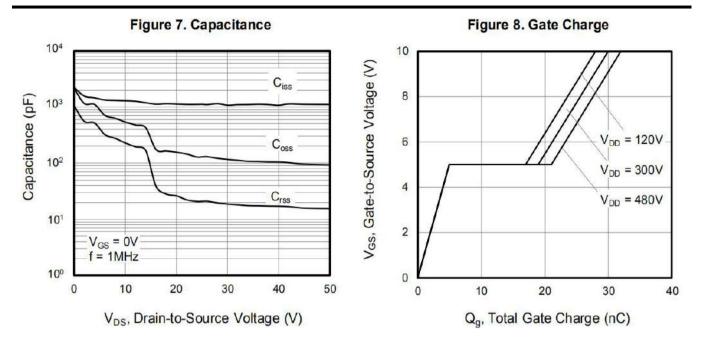


Figure 9. Transient Thermal Impedance TO-252 10¹ Z_{thJC}, Thermal Impedance (K/W) 100 10-1 D = 0.5D = 0.2D = 0.110-2 D = 0.05D = 0.02D = 0.0110-3 Single Pulse 10-4 10-7 10-6 10-5 10-4 10-3 10-2 10-1 Tp, Pulse Width (s)

Test Circuits and Waveforms

Figure A: Gate Charge Test Circuit and Waveform

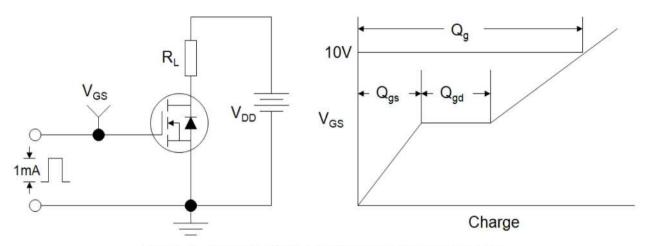


Figure B: Resistive Switching Test Circuit and Waveform

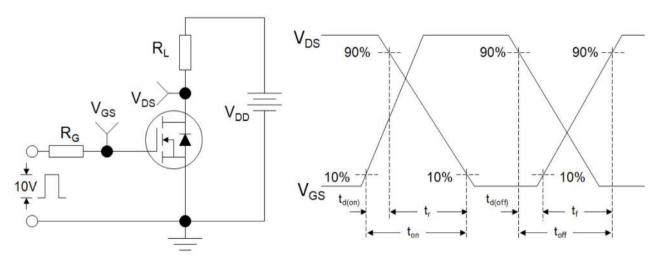
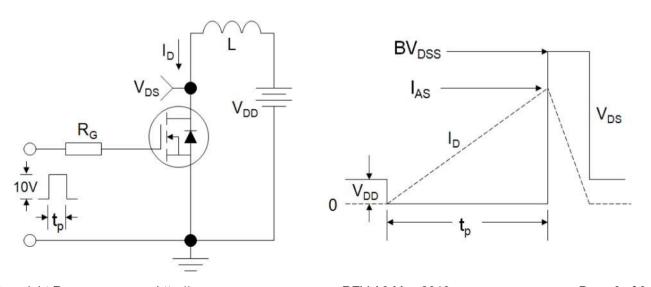
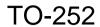
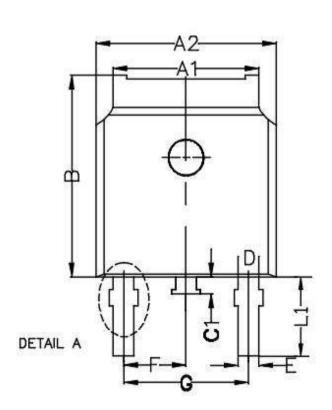
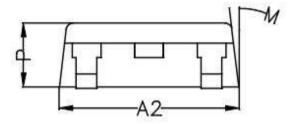



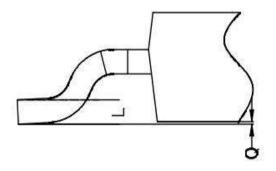
Figure C: Unclamped Inductive Switching Test Circuit and Waveform

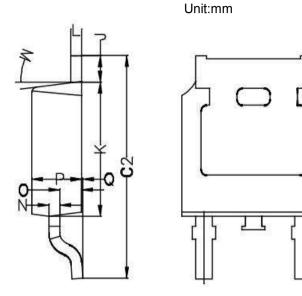
Copyright Reasunos


http://www.reasunos.com


REV:A3 May.2019


Page 6 of 8




Package outline drawing

Symbol	Min	Non	Max			
A1	5. 22	5. 32	5. 42			
A2	6. 55	6.60	6.65			
В	7.05	7. 10	7. 15			
C1	0.70	0.80	0.90			
C2	9. 70	9.90	10. 10			
D		1.00 REF.	Ē.			
Е		0.76 REF	•			
F	2. 286 REF.					
G	12	4. 572 RE	F.			
J	0.95	1.00	1.05			
K	6.05	6. 10	6. 15			
L		0.508 RE	F.			
L1	2.65	2.80	2. 95			
М		7° REF.				
N	0. 508 REF.					
0	0.96	1. 01	1.06			
P	2. 25	2.30	2. 35			
Q	0.00	0.05	0.10			

Disclaimers:

Reasunos Semiconductor Technology CO.,LTD(Reasunos)reserves the right to make changes without notice in order to improve reliability,function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information in current and complete. All products are sold subject to Reasunos's terms and conditions supplied at the time of order acknowledgement.

Reasunos Semiconductor Technology CO.,LTD warrants performance of its hardware products to the speciffications at the time of sale. Testing, reliability and quality control are used to the extene Reasunos deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

Reasunos Semiconductor Technology CO.,LTD does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using Reasunos's components. To minimize risk, customers must provide adequate design and operating safeguards.

Reasunos Semiconductor Technology CO.,LTD does not warrant or convey any license either expressed or implied under its patent rights,nor the rights of others.Reproduction of information in Reasunos's data sheeets or data books is permissible only if reproduction is without modification oralteration.Reproduction of this information with any alteration is an unfair and deceptive business practice. Reasunos Semiconductor Technology CO.,LTD is not responsible or liable for such altered documentation.

Resale of Reasunos's products with statements different from or beyond the parameters stated by Reasunos Semiconductor Technology CO.,LTD for that product or service voids all express or implied warrantees for the associated Reasunos's product or service and is unfair and deceptive business practice. Reasunos Semiconductor Technology CO.,LTD is not responsible or liable for such statements.

Life Support Policy:

Reasunos Semiconductor Technology CO.,LTD's Products are not authorized for use as critical components in life support devices or systems without the expressed written approval of Reasunos Semiconductor Technology CO.,LTD.

As used herein:

- 1.Life support devices or systems are devices or systems which:
 - a.are intended for surgical implant into the human body,
 - b.support or sustain life,
 - c.whose failuer to when properly used in accordance with instructions for used provided in the laeling, can be reasonably expected to result in significant injury to the user.

system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.