

USB 兼容和集成 OTG 升压的锂电池充电管理芯片

特点

- ◆ 适合大容量锂电池的全自动高效率快速充电 管理
 - 全自动涓流/恒流/恒压充电,停止和再充
 - 550-1450mA 可设置充电电流
 - 3MHz 同步降压, 1µH 小型电感
 - 输入电流精度: ±5% (100mA 和 500mA)
 - 充电电压精度: ±1%
 - 20V 输入耐压, 5.9V 最大工作输入电压
 - DPM 环路自动适应 VIN 的负载能力
 - 带复位控制的充电 32 秒/30 分钟安全定 时器
 - 无电池芯片可正常启动
- ◆ 失效适配器检测和抑制
- ◆ 低功耗的自动高阻抗模式
- ◆ 完整的保护功能
 - 电池反向漏电保护
 - 热限制和保护
 - 输入和输出过压保护
- ◆ 内置输入电流和输入电压限制
- ◆ 集成高达 1.5A 充电电流的功率 MOSFET
- ◆ 自动充电和 USB 兼容开机时序
- ◆ 最大充电电流和电压限制
- ◆ 固定频率的同步 PWM 控制器(3MHz)
- ◆ I²C 接口全范围充电参数设定
 - 输入电流限制阈值
 - 输入电压限制阈值
 - 快速充电电流/截止电流
 - 充电截止电压(3.5 V~4.44 V)
 - 低充电电流模式使能控制
 - 带复位控制的安全定时器(32 秒/30 分)
 - 充电截止使能控制

- 支持 3.4MHz 高速 I²C 模式
- ◆ USB OTG 升压模式
 - 电池输入电压范围: 2.5 V~4.5 V
 - V_{USB}输出能力: 5.0 V/ 500 mA
- ◆ CSP 2x2 封装

应用

- 移动和智能手机
- MP3 播放器
- 掌上设备
- 移动电源

典型应用图

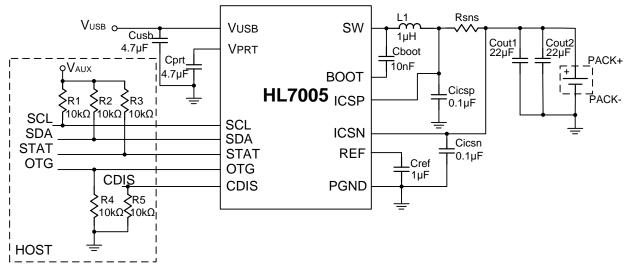


图 1 HL7005 典型应用图

	型号	值	规格	厂商
L1	LQH55DN1R0M03L	1μH	2220	Murata
Cicsp,Cicsn	C2012X5R1E104K	0.1µF	0805	TDK
Cboot	C2012X5R1E103K	10nF	0805	TDK
Cref	C2012X5R1E105K	1µF	0805	TDK
Cprt, Cusb	C2012X5R1E475K	4.7µF	0805	TDK
Cout1,Cout2	GRM319R61A226ME15D	22µF	1206	Murata
Rsns	ERJ8BWFR020V	68mΩ	1206	PANASONIC

表 1 推荐元器件列表

产品简介

HL7005 是一个紧凑,灵活,高效,兼容 USB 的开关式充电管理芯片,应用对象为手持式应用中广泛使用的单节锂离子电池和锂离子聚合物电池。充电参数编程可通过 I²C 接口完成。芯片集成一个同步 PWM 控制器,功率 MOSFET,输入电流检测,高精度的电流/电压调节和充电截止等功能到一个微型的 CSP 封装。

HL7005 将电池的充电过程分为三个阶段:涓流充电,恒流充电和恒压充电。输入电流自动被限制在由主机设定的阈值内。充电终止条件可以是基于电池电压或者用户选择设定的最小电流水平。一

个带复位控制的安全定时器为 I²C 接口提供安全后备。在正常工作过程中,如果电池电压下降到内部阈值以下时,芯片自动重新启动充电周期。充电状态可以通过 I²C 接口报告给主机。在充电过程中,芯片检测其结温(T」),一旦 T」升高至约 120℃,芯片会自动降低充电电流,保证芯片节温不高于 120℃。当输入电源未连接的时候,芯片自动进入睡眠模式或者高阻抗模式。为了支持 USB OTG设备,HL7005 通过对电池电压进行升压转换从 VUSB 输出电压 5.0V。芯片为 20 引脚的 CSP 封装。

管脚说明

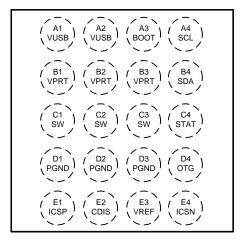


图2 正面

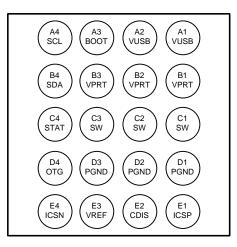


图3 背面

管脚名	管脚号	I/O	说明
ICSN	E4	I	电池电压和电流检测输入。如果有较长的走线连接到电池,需要连接一个陶瓷电容(最低 0.1μF)到 PGND。
V_{USB}	A1, A2	I/O	充电输入电压。需要从 V _{USB} 连接 1μF 电容到 PGND。在升压模式时,它为负载提供功率。
V_{PRT}	B1, B2, B3	I/O	反向阻断 FET 和上管开关 FET 之间的连接点。需要从 V _{PRT} 到 PGND 连接一个 4.7μF 陶瓷电容。
SW	C1, C2, C3	0	开关式降压器输出口。
воот	А3	I/O	上管栅极驱动的自举电容连接点。需要从 BOOT 引脚到 SW 引脚连接一个 10nF 的陶瓷电容(额定电压≥10 V)。
PGND	D1, D2, D3		功率地线。
ICSP	E1	I	充电电流检测输入。通过一个外部精密电阻检测电池电流。需要连接一个 0.1μF 陶瓷电容到 PGND。
SCL	A4	I	I ² C 接口时钟线。需要连接一个 1-10kΩ 的上拉电阻到 1.8V (V _{AUX} = VCC_HOST)。
SDA	B4	I/O	I ² C 接口数据线。需要连接一个 1-10kΩ 的上拉电阻到 1.8V (V _{AUX} = VCC_HOST)。
STAT	C4	0	充电状态引脚。当充电时拉低。其他情况下开漏输出。在出错期间,会输出一个 128µs 的脉冲。STAT 引脚功能由控制寄存器的 EN_STAT 位控制。STAT 可以被用来驱动一个 LED 或者与主机连接。

	7		N	5
	•	U	V	J

			1 Tellitilitial y
V_{REF}	E3	0	内部稳压电源旁路口。需要从这个输出脚到 PGND 连接一个 1µF 的瓷片电容。不推荐外部负载加在 V _{REF} 。
CDIS	E2	I	充电失效控制引脚。CDIS=0,充电有效。CDIS=1,充电无效, V _{USB} 到 GND 呈现高阻抗。
OTG	D4	I	升压模式使能控制或者输入电流限制选择引脚。 1. 当 OTG 功能有效时,芯片被强迫工作在升压模式。它比 I2C 控制有更高的优先级;此功能可被寄存器关闭。 2. 在开机复位 30 分钟模式下,OTG 引脚被默认用做输入电流限制选择引脚。此模式下 I ² C 寄存器的输入电流限制的设置值被忽略。OTG=High,IIN_LIMIT=500mA; OTG=Low,IIN_LIMIT=100mA

表 2 HL7005 管脚说明

内部功能方框图

图 4 HL7005 内部功能方框图

极限参数(Absolute Maximum Rating) (1)

• V _{USB} 脚电压	1V ~ 20V
• V _{PRT} , BOOT脚电压	0.3V ~ 20V
• SW脚电压	0.3V ~ 16V
• 其他脚电压	0.3V ~ 5.5V
• 芯片功率,P _D @25℃	1.17W
 结到环境热传导系数, θ_{JA}	85°C/W
 结到管壳热传导系数, θ_{JC}	25°C/W
• 芯片工作结温,T」	
● 芯片储藏结温,T _{stg}	
• 管脚焊接温度,T _s (10 秒)	260 °C
• ESD: HBM人体模型	2kV
• ESD: CDM充电器件模型	2kV

推荐工作条件(Recommended Operating Conditions) 注2

•	$V_{\text{USB}}, V_{\text{PRT}},$	SW脚电压	4.3V ~ 5.5V
•	芯片工作环境	竟温度, T A	
•	芯片工作结腦	昰,T _J	

注 1: 芯片使用过程中任何一项参数超过极限参数将造成永久损坏。

注 2: 芯片正常使用过程中任一管脚超过标称值则芯片性能指标不一定满足后续表格所列之范围。同时长时间超出推荐工作电压范围将可能造成芯片性能指标的永久性偏离后续表格所列之范围。如无特殊说明,芯片正常工作环境温度范围为-30℃至+85℃。

电气参数(Electrical Specifications)

充电和 OTG 升压功能电气参数

 V_{USB} = 5 V,HZ_MODE = 0,OPA_MODE = 0 (CDIS = 0), T_A = -40°C to 125°C,如无特别说明, T_A =25°C。

参数		测试条件	最小	典型	最大	单位
输入电流						
		V _{USB} > V _{USB} (min),PWM 工作 V _{USB} > V _{USB} (min),PWM 不工作		10	5	mA
I USB	0°C < T _A < 85°C,CDIS=1 或者 HZ_MODE=1 0°C < T _A < 85°C,V _{ICSN} = 4.2 V			850		μΑ
	电池向V _{USB} 端漏电	高阻抗模式。V _{USB} = 0 V, 测试 V _{USB}			5	μΑ
ligk	在高阻抗模式下电 池放电电流(ICSN, ICSP 和 SW 引脚 流入芯片) 0°C < T _A < 85°C, V _{ICSN} = 4.2 V, 高阻抗模式, V _{USB} = 0V, SCL, SDA, OTG = 0V 或者 1.8 V。				28	μΑ
充电截止电	压					
V _{OREG}	输出截止电压设定 范围	在截止电压下工作,可编程	3.5		4.44	V
	# 上 由 厂 姓 庄	T _A = 25°C	–1		1	%
截止电压精度		T _J =0-125°C	-2		2	%
充电电流(快速充电)					
	输出充电电流设定 范围	$V_{SHORT} \le V_{ICSN} < V_{OREG}$, $R_{SNS} = 68 \text{ m}\Omega$, $IO_LEVEL=0$,可 编程	550		1450	mA
I _{OCHARGE}	低充电电流(在开 机 30 min 模式后使 用默认值)		475	500	525	mA
	通过 R _(SNS) 计算截 止电压精度(根据 充电电流) V _{IREG} =I _{OCHARGE} × R _{SNS}		- 5		5	%
弱电池检测					 	
V_{LOWV}	弱电池电压阈值可 编程范围(1)	在 I ² C 控制下可调整	3.4		3.7	V

		1 1	ziii i iii i iai y				
	弱电池电压精度			- 5		5	%
	弱电池阈值的抗尖 峰延时	电压上升, 2m	V 过压, t _{RISE} = 100 ns		32		ms
CDIS 和 OT	G 引脚的逻辑电平						
V _{IL}	输入低电平阈值					0.4	V
V _{IH}	输入高电平阈值			1.2			V
I _{BIAS}	输入偏流	在控制引脚上	的电压是 1.8 V			1.0	μA
充电截止检	测						
	截止充电电流可编 程范围	$V_{ICSN} > V_{OREG}$ $R_{SNS} = 68 \text{ m}\Omega$		50		400	mA
	充电截止的抗尖峰 延时		下降,低于或超过阈 t _{FALL} = 100 ns		32		ms
I _{TERM}	通过 R _{SNS} 的充电	3.4 mV ≤ V _{IRE}	_{EG_TERM} ≤ 6.8 mV	-20		20	
	截止电流的调节精	6.8 mV < V _{IRE}	_{G_TERM} ≤ 17 mV	-10		10	%
度 V _{IREG_TERM} I _{TERM} × R _{SNS}		17 mV < V _{IREC}	-5.5		5.5	70	
适配器检测							
	输入电压下限	适配器检测	适配器检测 3		4	4.2	V
$V_{\text{USB(min)}}$	V _{USB} 升至 V _{USB(min)} 抗尖峰延时	电压上升, 2m	配器检测 3.8 压上升, 2mV 过压, t _{RISE} = 100 ns		32		ms
	V _{USB} (min)的迟滞	输入电压上升			200		mV
I _{USB_DETECT}	电流源到 GND	在适配器检测	期间		50		mΑ
tint	检测时间间隔	输入电源检测			2		S
输入电压动	态管理						
V _{USB DPM}	输入电压动态管理 阈值可编程范围			4.213		4.773	V
	V _{USB_DPM} 阈值精度			-2		2	%
输入电流限	制						
1	松) 由 法阴 出 闷 店	I _{IN} = 100 mA	T _A = 0°C~125°C	86	93	100	mA
I _{IN_LIMIT}	输入电流限制阈值	I _{IN} = 500 mA	T _A = 0°C~125°C	450	475	500	mA
V _{REF} 内部偏	置参考比较器						
V_{REF}	内部偏置参考电压	$V_{USB} > V_{USB(min)}$ $C_{VREF} = 1 \mu F$	$I_{VREF} = 1 \text{ mA}$	3.8		5.9	V
电池再充电	阈值						
	再充电阈值电压	低于 V _{OREG}	_{VREF} =1μF		120	150	mV
V_{RCH}	抗尖峰延时	V _{ICSN} 减少低 低于阈值 10m	于阈值,t _{FALL} =100 ns, N		128		ms

		i i Cili i ili i idi y				
状态输出						
V	低电平输出饱和电 压,STAT 引脚	lo = 10 mA (sink 电流)			0.4	V
V _{OL(STAT)}	STAT 的高电平漏 电流	STAT 引脚电压为 5.5V			1	μA
I ² C 总线逻辑	 揖电平和时序					
V_{OL}	输出低电平阈值	Io = 10 mA(sink 电流)			0.4	V
V_{IL}	输入低电平阈值	V _{pull-up} = 1.8 V,SDA 和 SCL			0.4	V
V_{IH}	输入高电平阈值	V _{pull-up} = 1.8 V,SDA 和 SCL	1.2			V
I _{BIAS}	输入偏置电流	V _{pull-up} = 1.8 V,SDA 和 SCL			1	μA
f _{SCL}	SCL 时钟频率				3.4	MHz
电池检测						
I _{DETECT}	电池检测电流,在 充 电 完 成 之 前 (sink 电流)	在检测到充电截止之后开始, V(ICSN) ≤ V(OREG)		2		mA
t _{DETECT}	电池检测时间			256		ms
睡眠参数					•	•
V _{SLP}	进入睡眠模式的阈 值 V _{USB} – V _{ICSN}	V _{USB(min)} ≤ V _{ICSN} ≤ V _{OREG} , V _{USB} 正 在下降		0		mV
	退出睡眠模式的迟 滞	$V_{USB(min)} \le V_{ICSN} \le V_{OREG}$		80		mV
V _{SLP_EXIT}	V _{USB} 升至 V _{SLP} + V _{SLP_EXIT} 的抗尖峰 延时			32		ms
PWM					•	
BOOT 引肽	可 SW 引脚的电压	在充电或者升压工作期间			6.5	V
Q1:输入管-	导通电阻	I _{IN_LIMIT} = 500 mA,在 V _{USB} 和 V _{PRT} 之间测量		150		
PWM BOOT 引脚到 SW 引脚的电压 Q1:输入管导通电阻 QU:开关管上管导通电阻		在 V _{PRT} 和 SW 之间测量, V _{BOOT} – V _{SW} = 4V		125		mΩ
QD:开关管	下管导通电阻	在 SW 和 PGND 之间测量		125		
,	振荡器频率			3.0		MHz
fosc	频率精度		-10		10	
D _{MAX}	最大占空比			93		%
D _{MIN}	最小占空比		0			
充电模式保				•	•	

HL7005

		r rommary				
V _{OVP IN USB}	输入 V _{USB} 过压阈值 电压	在充电期间 V _{USB} 上升到达关闭 转换器的临界点	5.7	5.9	6.1	V
0 VI _II V_00D	V _{OVP_IN_USB} 迟滞	V _{USB} 从大于 V _{OVP_IN_USB} 往下降		200		mV
I _{LIMIT}	充电时 cycle-by- cycle 电流限制	工作在充电模式	1.8	2.4	3.0	А
V_{SHORT}	涓流充电切换到快速 充电的电池电压阈值	Vicsn上升	1.9	2.0	2.1	V
	V _{SHORT} 迟滞	V _{ICSN} 降至 V _{SHORT} 之下		100		mV
I _{SHORT}	涓流充电电流	V _{ICSN} ≤ V _{SHORT}	20	30	40	mA
升压模式 Vu	_{ISB} 工作(OPA_MODE =	1, HZ_MODE = 0)				
V _{USB_B}	输出电压(到 V _{USB} 引脚)	2.5V < V _{ICSN} < 4.5 V		5.0		V
	输出电压精度	包括输入电压和负载调节	-3		3	%
I _{BO}	升压工作时最大输出 电流	3.0 V ≤ VICSN < 4.5 V	500			mA
I _{BLIMIT}	升压模式下 cycle-by -cycle 电流限制	2.5 V ≤ VICSN < 4.5 V		1.6		Α
V _{USB_OVP}	过压保护阈值(Vusb引脚)	升压期间 V _{USB} 超过 V _{USB_OVP} , 关闭转换器	5.7	5.9	6.1	V
	V _{USB_OVP} 迟滞	V _{USB} 从高于 V _{USB_OVP} 的值下降		200		mV
V	最小电池电压(ICSN	电池电压下降(升压期间)		2.5		V
V_{BATMIN}	引脚)	电池电压上升(升压开始之前)	2.8	2.9	3.0	V
保护						
Тантания	过温保护			145		
T _{SHTDWN}	温度迟滞			20		°C
T _{CF}	过温限流	充电电流开始减少		120		
t _{32S}	32 秒看门狗定时器	32 秒模式或者 HOST 模式	15	32		S
T _{30M}	30 分钟安全定时器	30 分钟模式	15	30		m

表 3 电气参数

注:

(1) 在 30 分钟模式下,如果电池电压高于 VLOWV,芯片将进入 Hi-Z 模式并等待 I2C 命令。

典型工作特征图(Typical Characteristics)

如无特别说明, V_{USB} = 5 V, V_{BAT} = 3.6 V, $I_{OCHARGE}$ =1450mA, T_A =25°C。

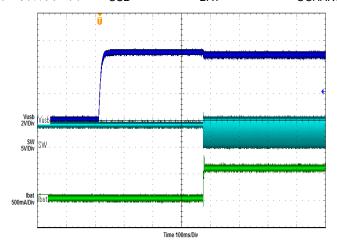


图 5 适配器插入开机(I_{OCHARGE}=550mA)

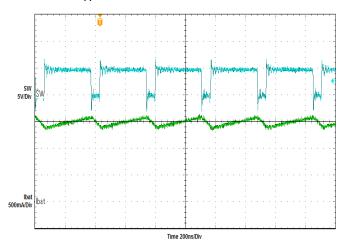


图 6 PWM 充电波形

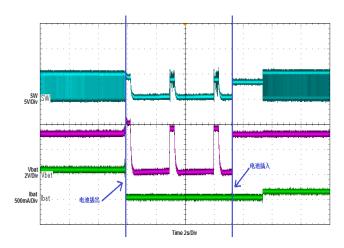


图 7 电池插入/拔出(V_{BAT}=3.2V, I_{IN_LIMIT}=500mA)

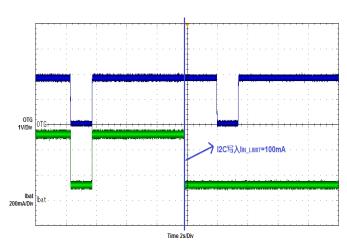


图 8 输入限流控制(V_{BAT}=3.0V, I_{IN_LIMIT}=100/500mA)

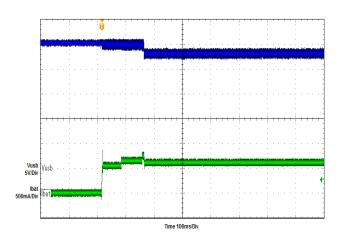


图 9 输入电压动态控制 (V_{USB}=5V/500mA 限流, V_{USB_DPM}=4.533V)

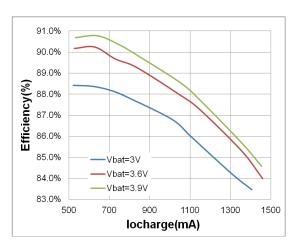


图 10 充电效率

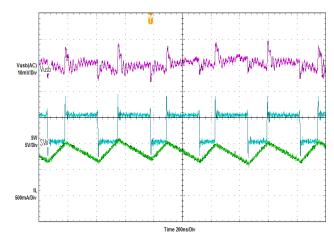


图 11 升压波形(PWM 模式) (I_{USB}=500mA)

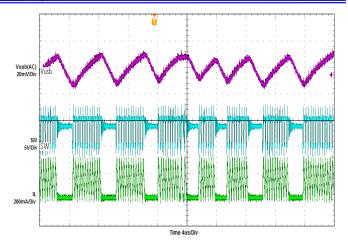


图 12 升压波形(PFM 模式) (I_{USB}=50mA)

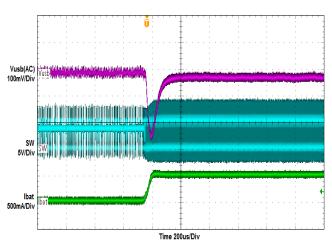


图 13 升压模式负载动态响应(I_{USB}=0mA->500mA)

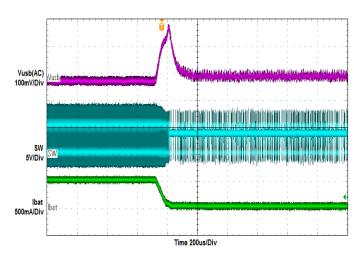


图 14 升压模式负载动态响应(I_{USB}=500mA->0mA)

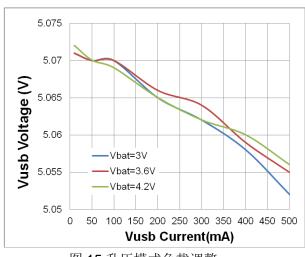


图 15 升压模式负载调整

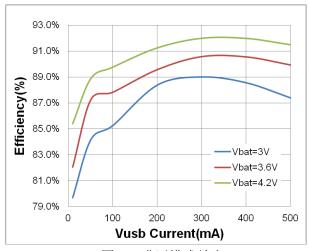


图 16 升压模式效率

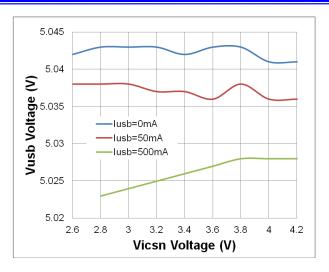


图 17 升压模式输入电压调整

详细功能描述

HL7005 提供完整的全自动三段式电池充电和管理:恒流预充电,大电流开关式恒流充电和恒压充电直至电池到达充电截止电压。当电池电压降到内部阈值以下时,芯片自动重启充电周期。如果输入电源断开,芯片将自动进入阻止电池电流泄漏到输入端的高阻模式。当芯片温度达到120℃时,芯片会自动减小充电电流防止芯片过热。

HL7005 有三个工作模式: 充电模式,升压模式和高阻抗模式。在充电模式下,芯片提供单节锂离子电池或者锂离子聚合物电池的精准充电系统。在升压模式,芯片将电池电压升高至 5.0V由 V_{USB}作为输出来为 OTG 设备提供电源。在高阻抗模式,芯片停止充电或者停止升压,呈现一个高阻抗状态,此时从 V_{USB}端和电池端消耗的电流都很小。当手持设备处在待机状态时,此模式可以有效地减少功耗。主机通过 I²C 进行通信(主机模式或者 32 秒模式),可以使芯片在不同的工作模式下实现平稳切换。在没有 I2C 主机时,芯片会启动 30 分钟安全定时器和进入 30 分钟(默认)模式。在 30 分钟模式工作期间,这个充电

器将仍然给电池充电,但使用每一个寄存器的默认值。

芯片在充电模式下工作描述

充电简介

一旦一个电压低于再充电阀值的有效电池已经插入并且一个有效适配器被检测到,HL7005进入充电模式。在充电模式里,芯片拥有5个控制环路调整输入电压,输入电流,充电电流,充电电压和芯片温度。在充电过程期间,所有5个环路都被开启并且其中一个环路占控制地位。图18(a)显示了一个没有输入电流调节环路的充电器的典型充电曲线,这是一个典型的恒流/恒压(CC/CV)充电曲线。图18(b)显示了在恒流模式下,由输入电流限制环路起主导作用的充电器的典型充电曲线,在这种情况下,充电电流大于输入电流,所以充电过程会比线性充电更快。HL7005的输入电压限制阀值,输入电流限制阈值,充电电流,截止电流和截止电压,这些参数全部都可以用12C接口编程设定。

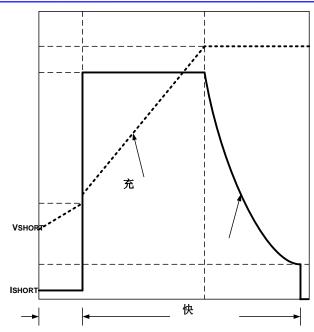


图 18(a) 没有输入电流调节环路的典型充电曲线图

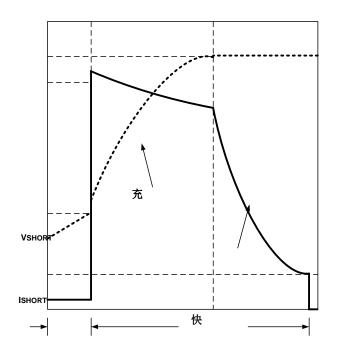


图 18(b) 具有输入电流调节环路的典型充电曲线图

充电模式下的 PWM 控制器

HL7005 提供了一个集成固定频率为 3 MHz 的控制器调节充电电流和电压。芯片工作占空比范围为 0% ~ 93%。

HL7005 一共有三个 NMOS 功率管: 输入保护管 Q1,开关上管 QU 和开关下管 QD。当 V_{USB}

小于 V_{ICSN} 的时候,输入端的 Q1 阻止电池放电。 一个电荷泵电路为 Q1 提供栅极驱动,同时通过 一个外部自举电容为 QU 提供栅极驱动电压。

通过 CBC(Cycle-by-cycle)的电流检测方式来限制流过 QU 的最大电流。QU 的限流阈值为2.4A。

电池充电过程

在预充电开始的阶段,当电池电压低于VSHORT阈值时,芯片提供一个涓流电流 I_{SHORT}到电池。当电池电压在 V_{SHORT}和 V_{OREG}之间,充电电流上升到快速充电电流 I_{OCHARGE},或者由I_{IN_LIMIT}设定的输入电流相符的充电电流。快速充电电流由软起模式建立,以减少电流和电压在瞬态转换时的过冲现象。输入电流限制 I_{IN_LIMIT}和快速充电电流都可以由主机设定。一旦电池电压到达充电截止电压 V_{OREG},充电电流会逐渐减少如图 18 所示。充电截止电压环路通过监控 ICSN和 PGND 引脚之间的电压差并与内部参考电压相比较,通过调整 PWM 占空比来调节电池电压。在主机模式下,可以通过 I2C 接口把充电截止电压设定在 3.50V 到 4.44V 之间。在 30 分钟模式下,充电截止电压被固定在 3.54V。

HL7005 在恒压充电阶段同时监控充电电流。如果充电截止功能开启,在主机控制下的普通充电过程期间,一旦 ICSN 引脚的电压高过电池再充电阈值 Voreg-Vrch 的时间持续超过 32毫秒,并同时检测到充电电流小于充电截止电流ITERM,芯片会关闭 PWM 充电。此时芯片会对ICSN 引脚进行电流大小为 IDETECT 的放电,此放电过程的持续时间为 tDETECT(典型值 256毫秒),然后检测电池电压。如果电池电压在 tDETECT 之后仍然高于再充电阈值,电池充电完成。电池检测过程用来确保充电截止功能不是因为电池拔出而被误触发。充电截止电流可以编程设定。主机可以设置充电控制寄存器的充电截止位(TE)为"0"来关闭此功能。

当以下条件被检测出来, 芯片会开始一个新

的充电周期:

- 1、电池电压降至 V_{OREG} V_{RCH} 阈值。
- 2、V_{USB}开机复位(POR),并且电池电压低过 V_(LOWY)弱电池阈值。
- 3、CE 位从 1 翻转到 0 或者 RESET 位被设置(主机控制下)。

芯片在升压模式下工作描述

在 32 秒模式下, I^2C 主机可以通过以下两种方式来使 HL7005 进入升压模式:

- 设定 OTG_EN=1, OTG_PL=1(默认状态), 同时 OTG 引脚为高电平,或者设定 OTG_EN=1, OTG_PL=0,同时 OTG 引脚 为低电平
- 2. 设定 OPA_MODE=1

在 OTG 模式下,芯片将电池升压到 5V,从 Vusb 端输出,输出电流可达 I_{BO}=500mA。

升压模式下的 PWM 控制器

类似于充电模式,在升压模式下,HL7005 提供工作频率约为 3 MHz 的电压式控制器,并通过检测 VPRT 引脚电压来调节输出电压。

在升压模式下,控制器通过检测 QD 的电流来进行 cycle-by-cycle 的电流限制,阈值为 1.6A。

升压启动

HL7005 芯片内置了软启动。OTG 开启时,在保证 OTG 输出电流的同时避免电感电流饱和,并且限制浪涌电流。同时芯片提供完整的输出端口过流,过压以及电池欠压等保护。

轻载情况下的变频(PFM)模式

升压模式轻载条件下,芯片工作在变频 PFM 模式下以减少损耗和提高效率。升压期间,一旦 电感电流小于 0mA,芯片关闭 PWM 转换器,直到 V_{USB} 引脚上的电压下降到额定输出电压,或者等待 30 微秒之后才恢复。当负载动态变化时,

芯片保证 PWM 模式和 PFM 模式之间的平稳切换。

升压模式下的安全计时器

升压模式开始工作的时候,芯片开启 32 秒 计时器,它可以由主机通过 I²C 接口来复位。在复位位 TMR_RST 写 "1"会重启 32 秒计时器并且当 32 秒计时器复位以后 TMR_RST 自动变为 "0"。一旦计时器计时期满,芯片就退出升压模式,在 STAT 引脚发出出错脉冲,同时设置状态寄存器的错误状态位。这个出错状态可由芯片重新开机或者主机控制清除。

高阻抗(Hi-Z)模式

在 Hi-Z 模式下, 充电器停止充电, 进入低静态电流状态以省电。芯片在以下几种情况会进入 Hi-Z 模式:

- 1. CDIS 引脚为高电平。
- 2. 在 30 分钟模式下且 CDIS 引脚为低电平时,

V_{USB}上电, V_{USB}>V_{USB(min)}, 且 V_{ICSN}> V_{Lowy}。

3. 在主机模式下,且 CDIS 引脚为低电平,如果 HZ-MODE 控制位被置为"1"并且 OTG 引脚不在使能状态(OTG EN=0)

如果芯片在 30 分钟模式下进入 Hi-Z 模式, CDIS 引脚为低电位,电池电压 V_{ICSN}<V_{LOWV}, 32 秒计时器将会被开启以监控主机控制是否可用。如果 32 秒计时器溢出, 芯片将会退出 Hi-Z 模式, 并进入 30 分钟模式同时关闭 32 秒计时器。

如果芯片在主机模式下进入 Hi-Z 模式, CDIS 引脚为低电位, $V_{USB}>V_{USB(min)}$,这时主机可以通过给 HZ_MODE 控制位写"0",使芯片退出 Hi-Z 模式。

在 30 分钟模式下拉高 CDIS 引脚可以重置 30 分钟计时器。

其他附属功能

HL7005 提供完整的报错功能,详情请参考应用信息部分的描述。

I2C 串行接口描述

I²C 是由飞利浦半导体开发的两线串行接口(见 I²C 总线规范,2000 年 1 月 2.1 版)。总线由一条有上拉结构的数据线(SDA)和一条有上拉结构的时钟线(SCL)组成。当总线空闲时,SDA 和 SCL 线都会被拉高。所有 I²C 兼容的设备通过漏极开路的 I/O 脚即 SDA 和 SCL 连接到I²C 总线。一个主机设备(通常是一个微控制器或者一个数字信号处理器)来控制总线。主机负责产生 SCL 信号和设备地址。主机也会产生表示数据传输的起始和停止的特定条件。从机设备在主机的控制下,在总线上接受和(或者)传输数据。

HL7005 作为一个从机工作,同时兼容 I²C 总 线规范中定义的以下数据传输模式: "标准"模式 (100kbps),"快速"模式 (400 kbps),"快速+"模式(1Mbps)和"高速"模式(高达 3.4Mbps 的写模式)。I²C 接口增加了电池充电解决方案的灵活性,使大部分的功能可根据瞬时的应用要求进行编程。

"标准"模式、"快速"模式和"快速+"模式下的数据传输协议是相同的,因此,在此文档中它们被称为 F/S 模式。高速模式的数据传输协议与 F/S 模式不同,所以它被称为 HS 模式。HL7005 的 7 位地址的初始值被设定为 1101010(6Ah)。

F/S 模式协议

主机通过产生一个起始条件来开启数据传输。起始条件是当 SCL 为高电平时,SDA 线发生从高至低的电平转换,停止条件则是当 SCL

为高电平时, SDA 线发生从低至高的电平转换, 如图 19 所示。

主机之后产生 SCL 脉冲,并在 SDA 线上传送 8 位地址和读/写方向位 R/W。在数据传送过程中,主机确保数据是有效的。判断数据有效的条件是要求在 SCL 线为高的周期内, SDA 线必须是稳定的(见图 20)。

图 19 起始和停止条件

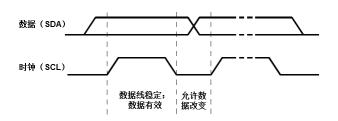


图 20 在串行接口上的位传输

所有的设备可以识别出由主机发送的地址并与它们内部的固定地址进行比较。只有和主机发送地址相对应的从机,通过将 SCL 的第九个为高的周期时所对应的 SDA 线拉至低电平,来产生一个响应(见图 21)。一旦检测到这个响应,主机知道一个与从机的通信链路已经建立完成。

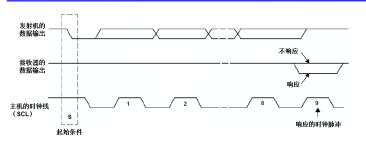


图 21 I^2C 总线的响应

主机产生更多的 SCL 周期以传输数据给从 机(R/W 位为 1) 或者从从机接收数据(R/W 位 为0)。在任何一个情况下,接收器需要响应发射 机发送的数据, 所以响应信号可以是由主机产生 也可以是由从机产生,这取决于哪一个是接收 器。由8位数据和1位响应组成的9位稳定数据 时序只要有需要就可以一直继续。为了表示数据 传输的结束, 主机会产生一个停止条件, 在 SCL 线为高时,把 SDA 线从低拉高(见图 22)。这将 释放总线并停止与从机的通信链路。所有兼容 I^2C 协议的设备都必须可以辨识这个停止条件。 收到停止条件后,所有设备都知道总线空闲了, 并等待下一个带有从机地址的起始条件。如果传 输提前终止,则主机需要发送一个停止条件,以 防止从机的 I²C 逻辑陷入混乱状态。在本节中没 有从寄存器地址中读出的数据,显示为 FFh。

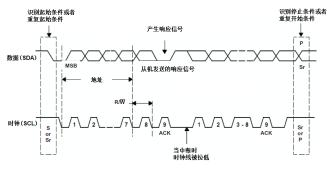


图 22 总线协议

H/S 模式协议

当总线空闲时,SDA 和 SCL 线都被上拉器件拉至高电平。

主机产生一个起始条件,并跟随一个包含 HS 主代码 0000 1XXX 的有效串行字节。这个传输

是在 F/S 模式,传输速度不超过 1Mbps。所有设备都不允许响应 HS 主代码,但是所有设备都必须识别它并切换各自内部的设定至支持3.4Mbps 的操作。

主机然后产生一个重复起始条件(一个重复起始条件与起始条件有相同的格式)。在这个重复起始条件之后,该协议与F/S模式一样,除了传输速度允许提高到3.4Mbps。一个停止条件可以结束HS模式并切换从机的所有内部设定至支持F/S模式。使用重复起始条件而不是停止条件可以确保总线继续在HS模式。如果传输提前终止,则主机需要发送一个停止条件,以防止从机的I²C逻辑陷入混乱状态。在本节中没有从寄存器地址中读出的数据,显示为FFh。

I2C 更新时序

芯片需要一个起始条件,一个有效的I²C地址,一个寄存器地址字节和一个为了单一更新的数据字节。在每一个字节接收完以后,芯片会通过把单个时钟脉冲为高电平周期的SDA线拉低来响应。一个有效的I²C地址选择芯片。芯片在LSB字节之后的响应信号的下降沿执行更新。

对于第一次更新,芯片需要一个起始条件,一个有效的I²C地址,一个寄存器地址字节和一个数据字节。对于所有连续更新,芯片需要一个寄存器地址字节,和一个数据字节。当一个停止条件被接收到时,芯片会立即释放I²C总线并且等待下一个新的起始条件。

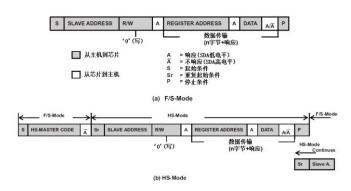


图 23 H/S 模式协议

从机地址字节

MSB							LSB
1	1	0	1	0	1	0	Χ

从机地址字节是从主机设备接收到的起始条 件后的第一个字节。

寄存器描述

寄存器总共有8个,其地址如下表所示。

Register	Address Bits								
Name	REG#	7	6	5	4	3	2	1	0
CHG_STATUS	00H	0	0	0	0	0	0	0	0
CHG_CONTROL0	01H	0	0	0	0	0	0	0	1
OREG	02H	0	0	0	0	0	0	1	0
IC_INFO	03H	0	0	0	0	0	0	1	1
IBAT	04H	0	0	0	0	0	1	0	0
CHG_CONTROL1	05H	0	0	0	0	0	1	0	1
SAFETY	06H	0	0	0	0	0	1	1	0
MONITOR0	10H	0	0	0	1	0	0	0	0

表 4 I²C 寄存器地址

下表列出寄存器中每一位的作用。粗体字表示默认值。

Bit	Name	Value	Туре	FUNCTION		
C	CHG_STATUS		Regist	ter Address: 00 Default Value:X1XX 0XXX		
7	TMD DST/OTC	1	W	W 写 1 重置安全计时器 (自动清除); 写 0 没影响。		
<i>'</i>	TMR_RST/OTG	1	R	返回 OTG 管脚的状态(1 为	月高电平)	
6	ENL STAT	0	R/W	阻止 STAT 管脚功能		
0	6 EN_STAT 1		K/VV	允许 STAT 管脚功能		
		00		准备好		
E.1	5:4 STAT		R	允许 PWM 充电。如果 CE=	0, 充电进行。	
3.4			K	充电完毕		
		11 Fault(出错状态		Fault (出错状态)	错状态)	
3	BOOST	0	R	本芯片没有处于 BOOST 模式		
3	ВООЗТ	1	, r	本芯片处于 BOOST 模式		
2:0	FAULT		R	Charge 模式 Boost 模式		

				Premm	II Iai y					
		000		正常(No I	-ault)		正常(No Fa	ault)		
		001		V _{USB} OVF)		V _{USB} OVP			
		010		Sleep Mode			Boost 软启失败			
		011		Poor Input Source		ICSN< VBA	TMIN			
		100		Output O	VP		N/A			
		101		Thermal	Shutdown		Thermal S	hutdown		
		110		Timer Fa	ult		Timer Faul	t; 重置所有	育寄存器	
		111		No Batter	'n		N/A			
Cł	HG_CONTROL0	1	Reg	gister Addr	ess: 01		Default Va	alue:0011	0000	
		00		100mA						
		01	5.44	500mA				+V) -T)+-111	∃ 45.1	
7:6	I _{INLIM}	10	R/W	800mA			USB Host	输入电流队	見制	
		11		没有输入	电流限制					
		00		3.4V						
		01	—— R/W	3.5V						
5:4	V_{LOWV}	V _{LOWV} 10		3.6V			弱电池阈值	1		
		11	-	3.7V						
		0 _		关闭充电自动结束功能						
3	TE	1	R/W	使能充电	自动结束功	力能				
	O.F.	0	D 44/	使能充电功能						
2	CE	1	R/W	关闭充电功能						
_	LIZ MODE	0	D 444	非高阻模	式					
1	HZ_MODE	1	R/W	高阻模式						
	ODA MODE	0		Charge †						
0	OPA_MODE	1		Boost 模:	式					
	OREG	F	Register	Address: 0)2	Def	ault Value:0	000 1010		
				充电截止	电压, 可编	程每阶 2	.0mV。默认值	直000010(3.54V)。	
				HEX	V _{OREG}	HEX	V _{OREG}	HEX	V _{OREG}	
				00	3.50	10	3.82	20	4.14	
				01	3.52	11	3.84	21	4.16	
7:2	OBEO		DAA	02	3.54	12	3.86	22	4.18	
	OREG	G R/	R/W	03	3.56	13	3.88	23	4.20	
				04	3.58	14	3.90	24	4.22	
				05	3.60	15	3.92	25	4.24	
				06	3.62	16	3.94	26	4.26	
				07	3.64	17	3.96	27	4.28	
		•	•	•		•			•	

Premininary IIL						00			
				08	3.66	18	3.98	28	4.30
				09	3.68	19	4.00	29	4.32
				0A	3.70	1A	4.02	2A	4.34
				0B	3.72	1B	4.04	2B	4.36
				0C	3.74	1C	4.06	2C	4.38
				0D	3.76	1D	4.08	2D	4.40
				0E	3.78	1E	4.10	2E	4.42
				0F	3.80	1F	4.12	2F~3F	4.44
1	OTG_PL	0	R/W	OTG 管脚低有效					
		1		OTG 管脚	高有效				
0	OTG_EN	0	R/W	HOST 模	式下禁用(DTG 管朋	却		
		1		HOST 模	式下使能(OTG 管制	却		
	IC_INFO		Registe	ster Address: 03 Default Value:0100 0001					
7:5	Vendor Code	010	R	本芯片供应商代号					
4:3	PN	00	R	Part Number					
2:0	REV	001	R	IC 的版本号					
	IBAT		Registe	gister Address: 04 Default Value:0000 0001					
7	RESET	0	R/W	无影响					
,	INEGET	1	1 (7 V V	重置所有	寄存器,腐	了 Safe	ety register(F	Reg6)	
		000		550mA					
		001			650mA				
		010			750mA		U 设置最大的 PWM 充电电流		自由流
6:4	I _{OCHARGE}	011	R/W		850mA		(mA)。默i		C -C101L
0.4	OCHARGE	100			1050mA		(550mA).		
		101		1150mA					
		110			1350mA				
		111			1450mA				
3	Reserved	0	R/W	N/A					
		000		50mA					
		001			100mA		- - 充电截止电流设置 -		
		010			150mA				
2:0	l	011	R/W		200mA				
2.0	I _{TERM}	100	17/44		250mA				
		101			300mA				
		110			350mA				
		111			400mA				

The control of the language of the langua					Premimary	11L1003		
5 IO_LEVEL 0 RW 1 RW 充电电流固定为500mA 充电电流固定为500mA 4 SP 0 R R 1 Vuss 控制环路设有起作用(Vuss 被限制存阈值) 3 EN_LEVEL 1 R CDIS 为低电平 CDIS 为低电平 CDIS 为低电平 CDIS 为高电平 4.213V 4.293V 4.4.533V 1.100 1.101 1.10 1.10 1.10 1.10 1.10 1		CHG_CONTROL1		F	Default Value:001X X100			
5 IO_LEVEL 1 RW 充电电流固定为500mA 4 SP 0 R R Vuss 控制环路提有用(Vuss 透原制在阈值) 3 EN_LEVEL 0 1 000 000 000 000 000 000 000 000 000	7:6	NA		R/W	N/A			
Table Ta		5 IO LEVEL 0		DAM	充电电流由 IOCHARGE 寄存器控制			
1	5	IO_LEVEL	1	R/VV	充电电流固定为 500mA			
1	4	CD.	0	Б	V _{USB} 控制环路没有起作用((V _{USB} 还高于限压阈值)		
Table	4	58	1	K	V _{USB} 控制环路起作用(V _{US}	B被限制在阈值)		
1			0	Б	CDIS 为低电平			
Part	3	EN_LEVEL	1	K	CDIS 为高电平			
Part			000		4.213V			
Part			001		4.293V			
100			010		4.373V			
100	0.0	VOD	011	DAA	4.453V			
110	2:0	VSP	100	R/VV	4.533V			
Till				4.613V				
SAFETY Register Address: 06 Default Value:0100 0000 7 Reserved 0 R 000			110		4.693V			
Reserved O					4.773V			
Bafe 100		SAFETY		Regis	Register Address: 06 Default Value:0100 0000			
Bafe ISAFE ISAFE ISAFE IOCHARGE。默认值 100 750mA 10CHARGE。默认值 100 1050mA 5存器,否则默认值会被锁 750mA 5存器,否则默认值会被锁 750mA 750mA 5存器,否则默认值会被锁 750mA 750mA 5存器,否则默认值会被锁 750mA 7	7	Reserved	0	R				
6:4 ISAFE 001			000	R/W	550mA	设置最大充电电流		
6:4 ISAFE 011			001		650mA			
6:4 ISAFE 100 R/W 1050mA 寄存器,否则默认值会被锁死,直到系统掉电或者 ICSN 胚低至 Vshort 以下,该寄存器才会被复位。 110 1350mA 降低至 Vshort 以下,该寄存器才会被复位。 0000 4.20V 设置最大电池电压。芯片上电场。芯片上电场。 0010 4.24V 设置最大电池电压。芯片上电后 I ² C 主机第一次通讯必须写这个寄存器,否则默认值会被锁死,直到系统掉电或者区外,有到系统掉电或者区外,有到系统掉电或者区外,有关系,否则默认值会被锁死,直到系统掉电或者区外,有关系,否则就认值会被锁死,直到系统掉电或者区外的股低至 Vshort 以下,该寄存器才会被复位。 3:0 0110 4.34V 高存器才会被复位。 4:36V 6 6 6			010		750mA	(1050mA)。芯片上电后 I ² C		
100 1050mA 寄存器,否则默认值会被锁 死,直到系统掉电或者 ICSN	6.4	ICAEE	011		850mA	主机第一次通讯必须写这个		
3:0 110 1350mA 降低至 VsHORT 以下,该寄存器才会被复位。 4.20V 器才会被复位。 0000 4.20V 0001 4.22V 0010 4.24V 设置最大电池电压。芯片上电后 I²C 主机第一次通讯必须写这个寄存器,否则默认值会被疑死,直到系统掉电或者的100 0101 4.30V 被锁死,直到系统掉电或者ICSN 降低至 VsHORT 以下,该寄存器才会被复位。 0111 4.34V 寄存器才会被复位。	0.4	ISAFE	100		1050mA	寄存器,否则默认值会被锁		
3:0 111 1450mA 器才会被复位。 4.20V 0000 4.22V 设置最大电池电压。芯片上电 设置最大电池电压。芯片上电 设置最大电池电压。芯片上电 6 I²C 主机第一次通讯必须 5 运个寄存器,否则默认值会 被锁死,直到系统掉电或者 1 ICSN 降低至 V _{SHORT} 以下,该 寄存器才会被复位。 111 1450mA 器才会被复位。			101		1150mA	死,直到系统掉电或者 ICSN		
3:0 0000			110	1350mA	降低至 V _{SHORT} 以下,该寄存			
3:0 0001 4.22V 设置最大电池电压。芯片上电 设置最大电池电压。芯片上电 设置最大电池电压。芯片上电 记字C 主机第一次通讯必须 写这个寄存器,否则默认值会 被锁死,直到系统掉电或者 记SN 降低至 V _{SHORT} 以下,该 寄存器才会被复位。 1000 4.30V ICSN 降低至 V _{SHORT} 以下,该 寄存器才会被复位。 1000 4.36V			111		1450mA	器才会被复位。		
3:04.24V设置最大电池电压。芯片上电00114.26V后 I²C 主机第一次通讯必须01004.28V写这个寄存器,否则默认值会01014.30V被锁死,直到系统掉电或者01104.32VICSN 降低至 V _{SHORT} 以下,该01114.34V寄存器才会被复位。10004.36V			0000		4.20V			
3:0 VSAFE 0011 4.26V 后 I ² C 主机第一次通讯必须写这个寄存器,否则默认值会被锁死,直到系统掉电或者记SN 降低至 V _{SHORT} 以下,该寄存器才会被复位。 0110 4.32V ICSN 降低至 V _{SHORT} 以下,该寄存器才会被复位。 1000 4.36V			0001		4.22V			
3:0 VSAFE 0100 4.28V 写这个寄存器,否则默认值会被锁死,直到系统掉电或者 iCSN 降低至 V _{SHORT} 以下,该 寄存器才会被复位。 0110 4.34V 寄存器才会被复位。 1000 4.36V			0010		4.24V] 设置最大电池电压。芯片上电		
3:0 VSAFE 0101 4.30V 被锁死,直到系统掉电或者ICSN 降低至 V _{SHORT} 以下,该寄存器才会被复位。 0111 4.34V 寄存器才会被复位。			0011	1	4.26V	后 I ² C 主机第一次通讯必须		
0101 4.30V 被锁处,直到系统掉电或者 0110 4.32V ICSN 降低至 V _{SHORT} 以下,该 0111 4.34V 1000 4.36V	2.0	\\C^==	0100	1	4.28V	写这个寄存器,否则默认值会		
0111 4.34V 寄存器才会被复位。 1000 4.36V	3:0	VOAFE	0101		4.30V	被锁死,直到系统掉电或者		
1000 4.36V			0110	1	4.32V	ICSN 降低至 V _{SHORT} 以下,该		
			0111		4.34V	寄存器才会被复位。		
1001 4.38V			1000	1	4.36V			
			1001		4.38V			

7	'n	N	5
┖	U	U	

		1010		4.40V			
		1011		4.42V			
		1100		4.44V			
		~1111		4.44 V			
	MONITOR0		Regis	eter Address: 10 Defa	ault Value: XXXX XXXX		
7	ITERM_CMP		R	ITERM 比较器的结果。1 意味着 ICHARGE>ITERM			
6	VBAT_CMP		R	VBAT 比较器的结果,1 意味着 V _{USB} >V _{ICSN}			
5	LINCHG		R	30mA 线性充电的状态。1 意味着正在进行。			
4	T 120		R	120℃过热保护。当芯片温度	度大于 120℃时,T_120=1 且		
4	1_120		K	充电电流会被限制,当芯片温度低于 120℃时, T_120=0。			
3	ICHG		R	0 意味着 ICHARGE 环路正在控制充电电流			
2	IVUSB		R	0 意味着 IUSB 环路(输入电流)正在控制充电电流			
1	VUSB_VALID		R	1 意味着 V _{USB} 通过检测可以用来充电。			
0	CV		R	1 意味着恒压环路控制充电,其他的限流环路没有起作用。			

表 5 I²C 寄存器列表

应用信息

中断 (STAT Pin) 描述

STAT 是一个漏极开路管脚。它驱动一个上拉电阻,通知处理器现在的充电状态。其它条件下,STAT 表现为一个高阻的状态。在报错状态下,128-µs 脉冲将会被发出通知主机。

状态	STAT 状态	
充电并且 EN_INT=1	低	
其他正常条件	高阻态	
充电模式报错: Timer fault,		
Sleep mode, V _{USB} /V _{BAT} OVP,	120 ца 任脉冲	
Poor input source, Battery	128-µs 低脉冲。	
absent, Thermal shutdown		
升压模式报错: Timer out,		
Over load, V _{USB} OVP, V _{BAT}	128-µs 低脉冲。	
UVLO, Thermal shutdown		

表 6 STAT 信号

过热限制和保护

在充电过程中为了防止芯片过热,芯片会监控芯片的结点温度 TJ,一旦温度到达热限制阈值 TCF就开始减少充电电流,保证芯片节温不超过 TCF。在任何状态下,如果 TJ 超过 TSHTDWN,芯片暂停充电。在此热保护模式下,PWM 关闭,计时器冻结。当 TJ 降至 T_{SHTDWN}之下约 20°C,充电过程重新开始。

USB 上电

在 POR 之前,如果主机继续写 TMR_RST 位 "1"停留在 32 秒模式,然后在 POR 的时候,则芯片进入普通充电模式(使用需要的控制位)。如果 POR 之后不在 32 秒模式,芯片将会在 30 分钟模式里根据标志位上默认的数值工作,直到主机更新控制寄存器。

寄存器的默认值会设定较低的充电电流和截止电压,以避免违反 USB 规范和对任何锂离子化

学物过充电,同时避免与主机失去通信。

充电电流检测电阻的选择指南

截止电流范围和充电电流范围根据检测电阻 R_{SNS} 的阻值决定。截止电流步长 I_{OTERM_STEP} 可以使用等式 1 计算:

$$Io(\text{TERM_STEP}) = \frac{V_{I}(\text{TERM0})}{R(\text{SNS})}$$
 (1)

表 10 说明了 3 种大小检测电阻的截止电流设定。例如,用 68m Ω 的检测电阻, $V_{(ITERM2)=1}$, $V_{(ITERM1)=0}$,和 $V_{(ITERM0)=1}$,那么 $ITERM=[(13.6mV x 1) + (6.8mV x 0) + (3.4mV x 1) + 3.4mV]/68m\Omega = 200mA + 0 + 50mA + 50mA = 300mA。$

		I(TERM)	I(TERM)	I(TERM)
BIT	V I(TERM)	(mA)	(mA)	(mA)
ы	(mV)	R(SNS) =	R(SNS) =	R(SNS)=
		$55 m\Omega$	68mΩ	100mΩ
VI(TERM2)	13.6	247	200	136
VI(TERM1)	6.8	124	100	68
VI(TERM0)	3.4	62	50	34
Offset	3.4	62	50	34

表 7

输出电感和电容的选择指南

HL7005 提供了内部环路补偿。通过内部环路补偿,最高的稳定性发生在当 LC 谐振频率 f_0 大约为 40 kHz(20 kHz ~ 80 kHz)。等式 3 可以用来计算输出电感 Lout 和输出电容 Cout。

$$f_0 = \frac{1}{2\pi\sqrt{L_{OUT} \times C_{OUT}}}$$
 (3)

为了减少输出电压纹波,推荐 CouT 为电容值为 22μF 和 100μF 之间的陶瓷电容。

参考 PCB 版图

PCB 的布局对发挥 HL7005 最佳性能有重要 影响。以下是推荐的布局方法。

- (1) 为了获得最佳性能,电源输入电容从输入端连接到 PGND,应该尽可能靠近芯片引脚。输出电感应该放置在离芯片比较近的地方,同时输出电容接在电感和芯片的 PGND 之间。目的是尽可能减小电流路径回路的面积(SW 引脚- LC 滤波器-PGND 引脚-芯片)。为了解决高频振荡问题,最有效的手段是通过合理的 PCB 布局,尽可能使高频电流通路回路变短(见图 24)。检测电阻应该靠近电感和输出电容的交界处。检测路径必须从 RSNS电阻背面引回芯片,不要让检测路径通过大电流路径。
- (2) 将耦合电容放在离它们各自的芯片引脚 近的地方,同时接近 PGND(不要将元件放在大电 流路径通过的地方)。全部小信号应该放在远离大 电流路径的地方。
- (3) PCB 应该有一个接地平面,它通过穿孔直接连接全部元件。(每个大功率电容需要打两个穿孔,芯片的 PGND 引脚需要打两个穿孔,每个小信号元件的电容需要打一个穿孔)。使用星形连接方法来保持电路块电流隔离(高功率/低功率/小信号),减少耦合噪声和地线噪声。一个单独的接地平面是一个很好的设计。使用小布局和单独的接地平面,尽量减小地线噪声,将元件隔离,减少各个信号之间的耦合。
- (4) 进入 V_{USB}, V_{PRT} 和来自 SW 引脚的高电流充电路径要有足够的电流能力,这样做是为了避免在这些路径的铜箔上的产生压降。PGND 引脚应该要连接接地平面,使电流返回内部的下管。
- (5) 尽量把 4.7μF 输入电容放在 V_{PRT} 引脚和 PGND 引脚附近,使高频电流回路面积小。尽量 把 1μF 输入电容放在 V_{USB} 引脚和 PGND 引脚附近,使高频电流回路面积尽可能小。

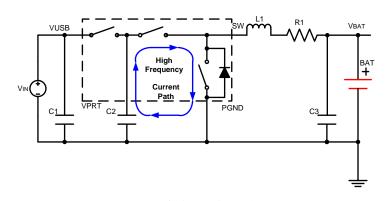


图 24 高频电流通路

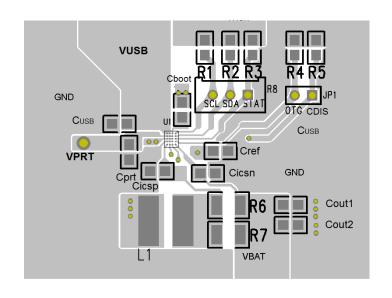


图 25 顶层

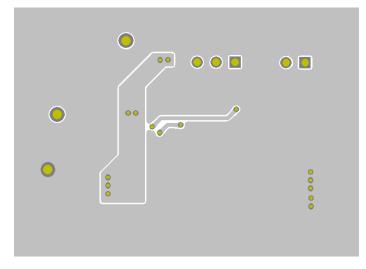
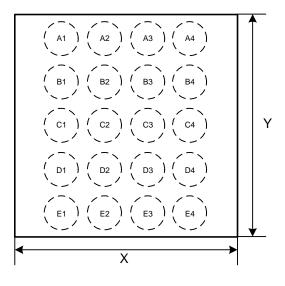
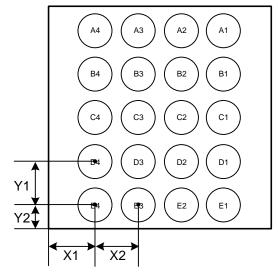
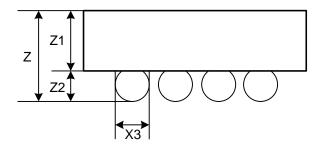




图 26 底层


封装信息

Top View

Bottom View

Side View

NAME	Max	Туре	Min	UNIT
Х	1935	1945	1955	μm
Υ	1935	1945	1955	μm
X1		372.5		μm
X2		400		μm
Y1		400		μm
Y2		172.5		μm
Z	600	610	620	μm
Z 1		420		μm
Z2	180	190	200	μm

使用权声明:

希荻微电子对其产品、文件以及服务保有一切变更、修正、修改、改善以及终止的权利,希荻微电子不会进行事先预告。客户购买前,建议与希荻微电子业务代表联系,以获取最新的产品信息。

希荻微电子的产品除非经过合法授权,否则不应使用于医疗或军事行为上。如果使用者因此导致任何身体伤害或生命威胁甚至死亡,希荻微电子将不负任何损害赔偿责任。

本文档上的所有文字内容、图片、商标为希获微电子所属知识产权。除非经过希获微电子事先授权,任何人不得擅自使用、修改、复制、公开、改作、散布、发行、公开发表。如有违反,希获微电子保留追究相关的人员的法律责任的权力。